Video 25 Monday, November 9, 2020 9:57 PM Training loss: $\chi(\theta) = \frac{1}{N} \sum_{i=1}^{N} \chi(y(x^{(i)}), \xi^{(i)})$ xuameters parameters of the model Generalizes to new data? Inhoduce a split beheen: - braining data - sused to find the parameters of our model - validation data - s used to find the hyperparameters - test data -> used to reague the generalization performance ability of the model to classify / predict on input it hasn't seen during training. For each of these 3 sets, we can compute a loss: - braining loss validation loss - test loss Why I we need a validation set? - n we con't hune hyperparameters on maining data Li ue want hyperparameters that generalize. example: picked a large number of neurons when designing a neural network could neuroite hairing Lla -s we con't have hyperparameters on test data G a form of "sheating" Ly us should only neasure best performance once by this would make it difficult to realistically evaluate/nearne generalization. Strategies for hyperparameter hening - Grid search: -> for each parameter, Unose candidate uslus -> train one nodel for each possible Combination of hyperparameter values. -) choose the combination that achieves minimal validation loss / arror -, for each parameter, pick random values - Randon search: -, train a lot of models with différent ombinations of random hyperparaneters values. _ choose le consinction that adhieres minimal validation loss. Advantage of random search (our gid search) is that we have to try less continations when the number of hyperparameters is large. example: difficult to perform a said search over la hyperparaneles Chas a rand on Search would till & viable. Reasoning about generalization Avoid overfitting: avoid the model from recognizing deta Recall the example of a deep neural network which we covered in the video on the universal approximation theorem. Copacity (i.e., has ability to memorite training data) Visnalize generalitation in practice: # training examples Similar figure for loss wrt # epochs)

> model parameters overfitting