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In machine learning we typically try to analyze high-dimensional datasets consisting of a collection of
numbers. As such, we routinely represent numbers in vectors and matrices. The representation and
manipulation of vectors and matrices are studied in the field of linear algebra. We briefly revise some of
the most relevant material for this course below.

1 Vectors & Matrices

Vector A vector x ∈ Rn is a one-dimensional list of n values:

x =


x1
x2
...
xn

 (1)

Matrix A matrix A ∈ Rm×n is a two-dimensional grid of m · n values:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 =

 | | |
a1 a2 . . . an
| | |

 (2)

Note

Individual matrix columns can be referred to as vectors ai ∈ Rm. Further note that vectors can be
treated as single-column matrices, i.e. a vector x ∈ Rn is can be treated as a matrix X ∈ Rn×1.
Following standard notation in ML, we denote scalar values as non-bold lower-case letters s ∈ R,
vectors as bold lower-case letters x ∈ Rn, and matrices as bold upper-case letters X ∈ Rm×n.

Transposition The transpose operation swaps the row and column indices of a matrix A ∈ Rm×n:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 A> =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . anm

 (3)
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Note that (A>)> = A. Analogously, vector transposition transforms a column vector x ∈ Rn×1 into a
row vector x> ∈ R1×n (or vice versa).

x =


x1
x2
...
xn

 x> =
[
x1 x2 · · · xn

]
(4)

Square Matrix A matrix is called a square matrix if both the row and the column dimensions have the
same size, i.e. if A ∈ Rn×n.

Symmetric Matrix A square matrix A ∈ Rn×n is called a symmetric matrix if the matrix is identical to
its transpose, i.e. A = A>.

Identity Matrix The identity matrix I of size n is a matrix that contains 1 on its main diagonal1 and 0
for all other entries:

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (5)

Trace The trace of a square matrix A is the sum of its diagonal elements:

Tr(A) =
n∑
i=1

aii. (6)

Definitness A square and symmetric matrix A ∈ Rn×n is called positive definite if x>Ax > 0 for all
non-zero x ∈ Rn. The definition can be relaxed to positive semi-definiteness by replacing > with ≥, i.e.
x>Ax ≥ 0 for all non-zero x ∈ Rn.

Rank The rank of a matrix A is the dimension of the vector space spanned by its columns.

Orthogonality A square matrix A is called orthogonal if

AA> = I. (7)

Note that this implies that an orthogonal matrix is always invertible since

AA−1 = AA> = I =⇒ A−1 = A>. (8)

Diagonal Matrix A matrix A is called diagonal if all the entries outside of its main diagonal are 0.

1The main diagonal is the top-left to bottom-right diagonal.
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Diagonalizability A square matrix A is called diagonalizable if there exists a diagonal matrix D and an
invertible matrix P such that

A = PDP−1. (9)

2 Basic Operations

2.1 Arithmetic Operations

Matrix Addition & Subtraction For a matrix A ∈ Rm×n and a matrix B ∈ Rm×n, their addition and
subtraction are preformed element-wise:

A + B =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



=


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


(10)

A−B =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

−

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



=


a11 − b11 a12 − b12 . . . a1n − b1n
a21 − b21 a22 − b22 . . . a2n − b2n

...
...

. . .
...

am1 − bm1 am2 − bm2 . . . amn − bmn


(11)

Matrix Multiplication For a matrix A ∈ Rm×k and a matrix B ∈ Rk×n, the matrix multiplication of
A ·B is given as follows:

A ·B =


a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
am1 am2 . . . amk

 ·

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bk1 bk2 . . . bkn



=


∑k

i=1 a1ibi1
∑k

i=1 a1ibi2 . . .
∑k

i=1 a1ibin∑k
i=1 a2ibi1

∑k
i=1 a2ibi2 . . .

∑k
i=1 a2ibin

...
...

. . .
...∑k

i=1 amibi1
∑k

i=1 amibi2 . . .
∑k

i=1 amibin


(12)
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Caution

Matrix multiplication has a few peculiar properties differentiating it from scalar multiplcation:
• In general, AB 6= BA (i.e. A and B do not commute).
• Matrix multiplication is not performed element-wise! However, the Hadamard product defines

element-wise multiplication for two shape-identical matrices A,B ∈ Rm×n:

A ∗B =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ∗

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



=


a11 · b11 a12 · b12 . . . a1n · b1n
a21 · b21 a22 · b22 . . . a2n · b2n

...
...

. . .
...

am1 · bm1 am2 · bm2 . . . amn · bmn



Inner Product For two vectors a, b ∈ Rn we define the inner product (sometimes also called dot product
or the scalar product) as follows:

〈a, b〉 = a>b =
n∑
i=1

aibi (13)

The dot product between two vectors a and b produces a scalar c ∈ R representing the sum of all
(dimension-aligned) multiplicative interactions.

Example Usage in Machine Learning

x1

x2

...

xd

∑

b

φ o

w
1

w2

wd

Consider the linear/logistic regression algorithm which can
be used to determine the best linear fit/classification to/of
the underlying data. For a given data point x ∈ Rd, we can
compute it’s prediction via a weighted sum (using weights
w ∈ Rd) of all input features. The weighted average is typ-
ically followed by an activation function φ, which for linear
regression corresponds to the identity map while it typically
corresponds to the a softmax function for logistic regression.

y = φ(〈x,w〉+b) = φ(x>w+b) = φ

((
n∑
i=1

xiwi

)
+ b

)
(14)

2.2 `p Norms

For a real number p ≥ 1, the `p-norm (or simply p-norm) of a vector x ∈ Rn is defined as

||x||p =
p

√√√√ n∑
i=1

|xi|p = (|x1|p + . . .+ |xn|p)
1
p . (15)
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x1

x2
||x||1

||x||2

||x||∞

Figure 1: Illustration of unit circles for vectors x ∈ R2 for various norms.

In particular, the `1 and `2 norms are often used in machine learning:

||x||1 =

n∑
i=1

|xi| = |x1|+ . . .+ |xn| (16)

||x|| = ||x||2 =

√√√√ n∑
i=1

x2i =
√
x21 + . . .+ x2n (17)

By taking p −→∞ we get the `∞ norm which is defined as the maximum over all absolute vector elements:

||x||∞ = max
i∈[n]
{|x1|, . . . , |xn|} (18)

Further note that higher-order `p norms are upper-bounded by lower-order `p norms:

||x||p+a ≤ ||x||p (19)

Example Usage in Machine Learning

Many machine learning algorithms use `p norms to either
• measure the distance between points in a high-dimensional data space (e.g., k-nearest neighbor

classification); or to
• bound the magnitude of a vector to a specific value (e.g., regularization in linear regression).

Example

Consider the vector x =

 5
2
−3

. Then the `1, `2, and `∞ norms are given as follows:

||x||1 = |5|+ |2|+ | − 3| = 10

||x||2 =
√

52 + 22 + (−3)2 =
√

25 + 4 + 9 = 6.1644

||x||∞ = 5

(20)

2.3 Determinant

The determinant of a square matrix A ∈ Rn×n yields a scalar that captures a set of properties associated
with the linear map represented by the matrix. For instance, an invertible matrix has a determinant not
equal to 0. Moreover, the determinant can be used to define the characteristic polynomial of a matrix, and
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further captures the degree of volume change induced by the matrix on an n-dimensional parallelepiped.

The determinant for A ∈ R2×2 and B ∈ R3×3 matrices can be computed as follows (higher order deter-
minants are beyond the scope of this class):

det(A) =

[
a b
c d

]
= ad− bc (21)

det(B) =

a b c
d e f
g h i


= a

[
e f
h i

]
− b

[
d f
g i

]
+ c

[
d e
g h

]
= aei+ bfg + cdh− ceg − bdi− afh

(22)

Example

Consider the matrix A =

[
3 7
1 −4

]
. Then the determinant is given by:

det(A) = 3 · (−4)− 7 · 1 = −19. (23)

3 Matrix Decompositions

It is often useful to factorize a matrix into a product of matrices. In general, there exists a wide variety
of decompositions2. We will focus on the most relevant of these factorizations for this class, namely the
Eigendecomposition and the Singular Value Decomposition.

3.1 Eigendecomposition

The Eigendecomposition of a matrix factorizes a square diagonalizable matrix A ∈ Rn×n into a set of
eigenvalues and eigenvectors.

Eigenvalues and Eigenvectors A non-zero vector v ∈ Rn is called an eigenvector of a square diagonal-
izable matrix A ∈ Rn×n if, for a scalar λ ∈ R it satisfies:

Av = λv. (24)

Intuitively speaking, an eigenvector v is a vector which, under the transformation applied by A, is only
scaled in its magnitude. In particular, such vectors v stay on on their own span and are only elongated or
shrinked. The degree of change in magnitude inflicted by A can be summarized in a single scalar λ, which
is the eigenvalue corresponding to v. The set of all eigenvalue-eigenvector combinations can be computed
by solving for the characteristic polynomial yielded by det(A− λI) = 0

2https://en.wikipedia.org/wiki/Matrix_decomposition
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Eigen-based Decomposition For a square diagonalizable matrix A ∈ Rn×n the eigendecomposition is
given by:

A = QΛQ−1 (25)

Here, Q is also a square matrix in Rn×n and contains the eigenvectors qi ∈ Rn as columns. Λ is a diagonal
matrix whose entries correspond to the eigenvalues of the respective eigenvectors from Q. In particular
Λii = λi is the eigenvalue associated with eigenvector qi.

Example

Consider the matrix A =

[
2 3
2 1

]
. We first diagonalize A as follows:

Q−1AQ =

[
x 0
0 y

]
[
a b
c d

]−1 [
2 3
2 1

] [
a b
c d

]
=

[
x 0
0 y

]
[
2 3
2 1

] [
a b
c d

]
=

[
a b
c d

] [
x 0
0 y

] (26)

Next, we derive a separate equation for each diagonal entry:[
2 3
2 1

] [
a
c

]
=

[
ax
cx

]
[
2 3
2 1

] [
a
c

]
= x

[
a
c

] (27)

[
2 3
2 1

] [
b
d

]
=

[
by
dy

]
[
2 3
2 1

] [
b
d

]
= y

[
b
d

] (28)

In its current form, these two equations correspond to the eigenvector problem discussed in Equa-

tion 24. Letting v =

[
a
c

]
and w =

[
b
d

]
we get

{
Av = xv

Aw = yw
(29)

Representing each of the above cases Au = xu, we solve for (A− λI)u = 0.

det(A− λI) = 0

det(

[
2 3
2 1

]
−
[
λ 0
0 λ

]
) = 0

det(

[
2− λ 3

2 1− λ

]
) = 0

(30)

Solving for the determinant yields:

(2− λ)(1− λ)− 2 · 3 = 0

λ2 − 3λ− 4 = 0

(λ+ 1)(λ− 4) = 0 =⇒ λ = −1 or λ = 4

(31)
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Substituting back into Equation 27 and Equation 28 using x = −1 and y = 4 we get:

[
2 3

2 1

][
a

c

]
= −1

[
a

c

]
[

2 3

2 1

][
b

d

]
= 4

[
b

d

] (32)

Solving these two equations yields: {
a+ c = 0

2b− 3d = 0
(33)

Thus, the matrix Q is given as:

Q =

[
a b
c d

]
=

[
−c 3

2d
c d

]
(34)

3.2 Singular Value Decomposition

The singular value decomposition generalizes the concepts from the Eigendecomposition to general ma-
trices A ∈ Rm×n:

A = UΣV > (35)

Here, U ∈ Rm×m is an orthogonal matrix, Σ ∈ Rm×n is a diagonal matrix, and V ∈ Rn×n is an orthogonal
matrix. The SVD can be derived by

1. Computing A>A, yielding a square symmetric matrix.

2. Finding the eigenvalues for A>A.

3. Finding the eigenvectors for A>A.

4. Normalizing the eigenvectors of A>A to get V .

5. Finding U using the normalized eigenvectors of V where ui = 1
σi
Avi.

Example Usage in Machine Learning

The singular value decomposition is frequently used as part of unsupervised learning algorithms.
In particular, the SVD forms the basis of an algorithm called principal components analysis (PCA),
which reduces data dimensions such that the reduced data still contains the maximum amount of
variability given the number of reduced dimensions. The reduction axes picked by PCA directly
correspond to the singular vectors identified by the singular value decomposition.

Example

Consider the matrix A =

[
3 2 2
2 3 −2

]
. We start by computing A>A:

A>A =

3 2
2 3
2 −2

[3 2 2
2 3 −2

]
=

13 12 2
12 13 −2
2 −2 8

 (36)
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We derive the characteristic polynomial as

det(A>A− λI) = −λ(λ2 − 34λ+ 225) = −λ(λ− 25)(λ− 9) (37)

The singular values are hence given by σ1 =
√

25 = 5 and σ2 =
√

9 = 3. Next, we find the
orthonormal (orthogonal & normalized) set of the eigenvectors inA>A, which will form our columns
in V . The eigenvalues for A>A are given by 25, 9, and 0.
For λ = 25, we get

A>A− 25I =

−12 12 2
12 −12 −2
2 −2 −17

 row
======⇒
reduction

1 −1 0
0 0 1
0 0 0

 unit-length
=======⇒

vector
v1 =


1√
2
1√
2

0

 (38)

For λ = 9, we get

A>A− 25I =

 4 12 2
12 4 −2
2 −2 −1

 row
======⇒
reduction

1 0 −1
4

0 1 1
4

0 0 0

 unit-length
=======⇒

vector
v2 =


1√
18

− 1√
18

4√
18

 (39)

For λ = 0, we find a unit-vector perpendicular to v1 and v2. A perpendicular vector to v1 =

ab
c


requires −a = b and an 0 inner-product with v2, i.e. 2a√

18
+ 4c√

18
= 0 yielding −a = 2c. Hence,

v3 =

 a
−a
−a

2

. Normalizing the vector requires a = 2
3 and results in v3 =

 2
3
−2

3
−1

3

.
Having obtained all entries in V , we can now compute the values in U using ui = 1

σi
Avi.

This yields the final singular value decomposition:

A = UΣV > =

[
1√
2

1√
2

1√
2
− 1√

2

] [
5 0 0
0 3 0

]
1√
2

1√
2

0
1√
18
− 1√

18
4√
18

2
3 −2

3 −1
3

 (40)

More details can be found in https://www.d.umn.edu/~mhampton/m4326svd_example.pdf.
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