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Synonyms

Private machine learning; Robust machine learn-
ing; Trustworthy machine learning

Definition

Adversarial machine learning is a subfield of
computer security interested with the study
of machine learning systems in the presence
of adversaries. A systematic characterization
of worst-case behavior enables the design of
machine learning algorithms with confidentiality,
integrity, and availability guarantees that
contribute to increasing the trust that end users
can place in systems that deploy machine
learning components.

Background

In 2012, a breakthrough (Krizhevsky et al. 2012)
in machine learning (ML) slashed the error rate
for the ImageNet computer vision benchmark
and its associated object recognition competition

(Russakovsky et al. 2015). The winning entry
by Krizhevsky, Sutskever, and Hinton from the
University of Toronto employed a deep neural
network, a class of ML models that learns a hier-
archical set of data representations by compos-
ing individual computing units – the neurons –
organized in layers. The following years saw a
surge of interest in the field of deep learning and
eventually also revived interest in the study of
the vulnerabilities of ML systems (Huang et al.
2011), an area often referred to as adversarial
machine learning (AML).

Theory and Application

In a seminal paper, Szegedy et al. introduced
the concept of adversarial examples (Szegedy
et al. 2013) and demonstrated that while deep
neural networks had enabled machines to achieve
performance comparable to humans in certain
computer vision tasks, they still remained vulner-
able to subtle perturbations of their inputs. While
adversarial examples were originally introduced
as an “intriguing property” in the ML commu-
nity, the security community quickly realized the
implications of these findings to the robustness
of ML systems deployed in adversarial settings.
Biggio et al. demonstrated in a work concurrent
to Szegedy et al. how support vector machines
and shallow neural networks can be manipulated
by an adversary (Biggio et al. 2013). In 2015
and 2016, Papernot et al. introduced algorithms
enabling adversaries to craft adversarial examples
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capable of attacking deep neural networks with
(Papernot et al. 2016b) and without (Papernot
et al. 2017) knowledge of the model’s internal
parameters. The logical conclusion of this line
of research was that attacks against ML systems
were now practical, and adversarial examples are
just one of the many threats faced by ML.

Why are ML systems vulnerable to adver-
sarial inputs? The answer lies in the underlying
assumption made by most modern approaches
to ML: the training and test distributions are
assumed to be identical. That is, the data used
to create a model should come from the same
distribution than the data used to test and deploy
it. A learning algorithm is then tasked with find-
ing a model that will generalize from the training
data to the test data. When an adversary comes in
the picture, they typically break this assumption
in one of two ways. They can manipulate the
training distribution, in what is broadly referred
to as a poisoning attack (Rubinstein et al. 2009).
Training points inserted or modified by the adver-
sary generally induce the learning algorithm to
extract patterns that are not relevant to solving
the task which the model was originally designed
to solve. When the model is then deployed, these
spurious patterns manifest themselves in the form
of incorrect model predictions on any test inputs
or, for certain attacks (Gu et al. 2017), only
the test inputs which have been marked with a
specific trigger in their features – à la backdoor.
Adversaries can also manipulate the test distri-
bution, creating a drift with the distribution the
model developer had intended to model, to mount
an evasion attack. Adversarial examples are an
example of such a threat.

Both poisoning and evasion attacks target
the integrity of ML. However, ML systems are
not unlike other computer systems, and the
traditional computer security triad (Anderson
2008) of confidentiality, integrity, and availability
(CIA) also applies to them. In ML, confidentiality
takes two flavors depending on whether it
applies to the data or the model itself. User
concerns around the centralization of data
to enable learning has prompted research on
distributed counterparts (Konečný et al. 2016)
to centralized learning algorithms. In a similar

vein, confidential inference makes it possible for
a model owner to make predictions on inputs
without the user having to reveal the input to the
model owner. Approaches for confidential ML
often rely on secure enclaves, secure multiparty
computation, or homomorphic encryption
(Ohrimenko et al. 2016; Gilad-Bachrach et al.
2016). A different angle on confidentiality
considers the model itself, and the IP that it
constitutes: adversaries may exploit querying
access to an initially unknown model to recover
details of its internals through what is known
as a model stealing or extraction attack (Tramèr
et al. 2016). The question of availability arises in
critical ML systems, where model predictions
are relied upon to take decisions that have
implications to the security and safety of control
systems and production environments. This is
for instance the case for resource allocation in
datacenter management or autonomous systems.
Recent work exposed how hardware speculation
introduced in ML accelerators, such as GPUs
and FPGAs, expands the attack surface of ML
systems. Adversaries can exploit optimizations
and speculation performed by hardware to craft
sponge examples – inputs that increase the
latency and energy consumption of hardware
thus jeopardizing the availability of models as
they make critical predictions (Shumailov et al.
2020).

Given the widespread application of ML, and
the resources it puts at risk, it is natural to ask
how ML can be secured. Limited progress has
been achieved at the time of writing, despite
significant interest in AML. One of the major
obstacles is the lack of established security model
for ML systems. This is perhaps best illustrated
by our limited understanding of what robust-
ness to adversarial examples entails to. Existing
definitions continue to consider what was intro-
duced as a toy problem to bootstrap research
in seminal work by Szegedy et al. (2013) and
Goodfellow et al. (2014). While this has led
to useful progress in the realm of robust opti-
mization (Wong and Kolter 2018), the resulting
techniques introduce an unnecessary trade-off
with the model’s ability to generalize (Tramèr
et al. 2020). There is nascent recognition that
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considering the entirety of the system deploying
ML rather than the ML component in isolation
will support progress towards an effective formu-
lation of what robustness means in the context of
ML.

Open Problems and Future Directions

Does this mean that ML applications will give
rise to a never-ending arms race, à la Lampson
(2004), between attackers and defenders? Not
necessarily. The intricate relationship between
ML and cryptography gives reasons to hope for
a systematic approach to secure ML, which does
not rely on secrecy and adheres to Kerckhoffs’
Principle (Kerckhoffs 1883). Like cryptographic
protocols and systems, many components of ML
systems are amenable to formal specification.
This is best illustrated by advances in privacy-
preserving ML. Differential privacy has
established itself as the gold standard for defining
privacy (Dwork et al. 2006). With roots in cryp-
tography, the definition involves a game between
an algorithm and adversary: the adversary
observes the algorithm’s outputs to extract private
information contained in the algorithm’s inputs
whereas the algorithm leverages randomization to
limit the adversary. Through an analytical analy-
sis of the sensitivity of model updates to training
data, differential privacy has been successfully
applied to reason about and strengthen the pri-
vacy of ML algorithms (Abadi et al. 2016; Paper-
not et al. 2016a). This demonstrates that a prin-
cipled approach to secure ML is possible when
the adversary is modeled precisely in a way that
aligns human norms with the generalization goal
of ML. Beyond the security and privacy of ML,
work in the same vein will be needed to ensure
that ML is deployed with a strong understanding
of its consequences on ethics, fairness, and the
law (Kumar et al. 2020) – to cite a few only.

Cross-References

�Data Mining (Privacy in)
�Differential Privacy
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